
www.cppforschool.com

Structure

A structure is a collection of variable which can be same or different types. You

can refer to a structure as a single variable and to its parts as members of that

variable by using the dot (.) operator. The power of structures lies in the fact

that once defined, the structure name becomes a user-defined data type and

may be used the same way as other built-in data types, such as int, double,

char.

struct Student

{

 int rollno, age;

 char name[80];

 float marks;

};

int main()

{

 // declare two variables of the new type

 Student s1, s3;

 //accessing of data members

 cin >> s1.rollno >> s1.age >> s1.name >> s1.marks;

 cout << s1.rollno << s1.age << s1.name << s1.marks;

 //initialization of structure variable

 Student s2 = {100, 17, "Aniket", 92};

 cout << s2.rollno << s2.age << s2.name << s2.marks;

 //structure variable in assignment statement

 s3 = s2;

 cout << s3.rollno << s3.age << s3.name << s3.marks;

 return 0;

}

http://www.cppforschool.com/

Defining a structure

When dealing with the students in a school, many variables of different types

are needed. It may be necessary to keep track of name, age, Rollno, and

marks point for example.

struct Student

{

 int rollno, age;

 char name[80];

 float marks;

};

Student is called the structure tag, and is your brand new data type, like int,
double or char.

rollno, name, age, and marks are structure members.

Declaring Variables of Type struct

The most efficient method of dealing with structure variables is to define the

structure globally. This tells "the whole world", namely main and any functions

in the program, that a new data type exists. To declare a structure globally,

place it BEFORE void main(). The structure variables can then be defined

locally in main, for example…

struct Student

{

 int rollno, age;

 char name[80];

 float marks;

};

int main()

{

 // declare two variables of the new type

 Student s1, s3;

 ………

 ………

 return 0;

}

Alternate method of declaring variables of type struct:

struct Student

{

 int rollno, age;

 char name[80];

 float marks;

} s1, s3;

Accessing of data members

The accessing of data members is done by using the following format:

structure variable.member name

for example

cin >> s1.rollno >> s1.age >> s1.name >> s1.marks;

Initialization of structure variable

Initialization is done at the time of declaration of a variable. For example

Student s2 = {100, 17, "Aniket", 92};

Structure variable in assignment statement

 s3 = s2;

The statement assigns the value of each member of s2 to the corresponding
member of s3. Note that one structure variable can be assigned to another only

when they are of the same structure type, otherwise complier will give an error.

Nested structure (Structure within structure)

It is possible to use a structure to define another structure. This is called

nesting of structure. Consider the following program

struct Day

{

 int month, date, year;

};

struct Student

{

 int rollno, age;

 char name[80];

 Day date_of_birth;

 float marks;

};

Accessing Member variables of Student

To access members of date_of_birth we can write the statements as below :

Student s; // Structure variable of Student

s.date_of_birth.month = 11;

s.date_of_birth.date = 5;

s.date_of_birth.year = 1999;

typedef

It is used to define new data type for an existing data type. It provides and

alternative name for standard data type. It is used for self documenting the

code by allowing descriptive name for the standard data type.

The general format is:

typedef existing datatype new datatype

for example:

typedef float real;

Now, in a program one can use datatype real instead of float.

Therefore, the following statement is valid:

real amount;

Enumerated data type

The enum specifier defines the set of names which are stored internally as

integer constant. The first name was given the integer value 0, the second

value 1 and so on.

for example:

enum months{jan, feb, mar, apr, may} ;

It has the following features:

 It is user defined.

 It works if you know in advance a finite list of values that a data type can

take.

 The list cannot be input by the user or output on the screen.

#define preprocessor directive

The #define preprocessor allows to define symbolic names and constants e.g.

#define pi 3.14159

This statement will translate every occurrence of PI in the program to 3.14159

Macros

Macros are built on the #define preprocessor. Normally a macro would look like:

#define square(x) x*x

Its arguments substituted for replacement text, when the macro is expanded.

