
www.cppforschool.com

Data File Handling in C++

File. The information / data stored under a specific name on a storage device, is

called a file.

Stream. It refers to a sequence of bytes.

Text file. It is a file that stores information in ASCII characters. In text files,

each line of text is terminated with a special character known as EOL (End of

Line) character or delimiter character. When this EOL character is read or

written, certain internal translations take place.

Binary file. It is a file that contains information in the same format as it is held

in memory. In binary files, no delimiters are used for a line and no translations

occur here.

Classes for file stream operation

ofstream: Stream class to write on files

ifstream: Stream class to read from files

fstream: Stream class to both read and write from/to files.

Opening a file

OPENING FILE USING CONSTRUCTOR

ofstream outFile("sample.txt"); //output only

ifstream inFile(“sample.txt”); //input only

OPENING FILE USING open()

Stream-object.open(“filename”, mode)

 ofstream outFile;

 outFile.open("sample.txt");

 ifstream inFile;

 inFile.open("sample.txt");

http://www.cppforschool.com/

File mode parameter Meaning

ios::app Append to end of file

ios::ate go to end of file on opening

ios::binary file open in binary mode

ios::in open file for reading only

ios::out open file for writing only

ios::nocreate open fails if the file does not exist

ios::noreplace open fails if the file already exist

ios::trunc delete the contents of the file if it exist

All these flags can be combined using the bitwise operator OR (|). For example,

if we want to open the file example.bin in binary mode to add data we could do

it by the following call to member function open():

fstream file;

file.open ("example.bin", ios::out | ios::app | ios::binary);

Closing File

 outFile.close();

 inFile.close();

INPUT AND OUTPUT OPERATION

put() and get() function

the function put() writes a single character to the associated stream. Similarly,

the function get() reads a single character form the associated stream.

example :

file.get(ch);

file.put(ch);

write() and read() function

write() and read() functions write and read blocks of binary data.

example:

file.read((char *)&obj, sizeof(obj));

file.write((char *)&obj, sizeof(obj));

ERROR HANDLING FUNCTION

FUNCTION RETURN VALUE AND MEANING

eof()
returns true (non zero) if end of file is
encountered while reading; otherwise return

false(zero)

fail()
return true when an input or output operation

has failed

bad()
returns true if an invalid operation is attempted
or any unrecoverable error has occurred.

good() returns true if no error has occurred.

 File Pointers and Their Manipulation

All i/o streams objects have, at least, one internal stream pointer:

ifstream, like istream, has a pointer known as the get pointer that points to the

element to be read in the next input operation.

ofstream, like ostream, has a pointer known as the put pointer that points to

the location where the next element has to be written.

Finally, fstream, inherits both, the get and the put pointers, from iostream

(which is itself derived from both istream and ostream).

These internal stream pointers that point to the reading or writing locations

within a stream can be manipulated using the following member functions:

seekg() moves get pointer(input) to a specified location

seekp() moves put pointer (output) to a specified location

tellg() gives the current position of the get pointer

tellp() gives the current position of the put pointer

The other prototype for these functions is:

seekg(offset, refposition);

seekp(offset, refposition);

The parameter offset represents the number of bytes the file pointer is to be

moved from the location specified by the parameter refposition. The refposition

takes one of the following three constants defined in the ios class.

ios::beg start of the file

ios::cur current position of the pointer

ios::end end of the file

example:

file.seekg(-10, ios::cur);

